首页> 外文OA文献 >Delay-induced depinning of localized structures in a spatially inhomogeneous Swift-Hohenberg model
【2h】

Delay-induced depinning of localized structures in a spatially inhomogeneous Swift-Hohenberg model

机译:在空间非均匀Swift-Hohenberg模型中延迟诱导的局部结构固定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report on the dynamics of localized structures in an inhomogeneous Swift-Hohenberg model describing pattern formation in the transverse plane of an optical cavity. This real order parameter equation is valid close to the second-order critical point associated with bistability. The optical cavity is illuminated by an inhomogeneous spatial Gaussian pumping beam and subjected to time-delayed feedback. The Gaussian injection beam breaks the translational symmetry of the system by exerting an attracting force on the localized structure. We show that the localized structure can be pinned to the center of the inhomogeneity, suppressing the delay-induced drift bifurcation that has been reported in the particular case where the injection is homogeneous, assuming a continuous wave operation. Under an inhomogeneous spatial pumping beam, we perform the stability analysis of localized solutions to identify different instability regimes induced by time-delayed feedback. In particular, we predict the formation of two-arm spirals, as well as oscillating and depinning dynamics caused by the interplay of an attracting inhomogeneity and destabilizing time-delayed feedback. The transition from oscillating to depinning solutions is investigated by means of numerical continuation techniques. Analytically, we use an order parameter approach to derive a normal form of the delay-induced Hopf bifurcation leading to an oscillating solution. Additionally we model the interplay of an attracting inhomogeneity and destabilizing time delay by describing the localized solution as an overdamped particle in a potential well generated by the inhomogeneity. In this case, the time-delayed feedback acts as a driving force. Comparing results from the later approach with the full Swift-Hohenberg model, we show that the approach not only provides an instructive description of the depinning dynamics, but also is numerically accurate throughout most of the parameter regime.
机译:我们报告了不均匀的Swift-Hohenberg模型中的局部结构的动力学,该模型描述了光学腔的横向平面中的图案形成。该实阶参数方程在与双稳态相关的二阶临界点附近有效。光腔被不均匀的空间高斯泵浦光束照射,并受到时间延迟的反馈。高斯注入光束通过在局部结构上施加吸引力来破坏系统的平移对称性。我们表明,局部结构可以固定在不均匀性的中心,从而在假设连续波操作的情况下,在注入均匀的特定情况下,可以抑制延迟引起的漂移分叉。在不均匀的空间泵浦光束下,我们进行局部解的稳定性分析,以识别由时滞反馈引起的不同的不稳定状态。特别是,我们预测了两臂螺旋的形成,以及由吸引不均匀性和不稳定的延时反馈相互作用所引起的振荡和钉扎动力学。通过数值连续技术研究了从振动解到固定销的过渡。在分析上,我们使用阶数参数方法来导出延迟引起的Hopf分叉的正规形式,从而导致振荡解。此外,我们通过将局部溶液描述为由不均匀性产生的势阱中的过度阻尼粒子,来模拟吸引不均匀性和不稳定时间延迟之间的相互作用。在这种情况下,延时反馈充当驱动力。将后一种方法的结果与完整的Swift-Hohenberg模型进行比较,我们发现该方法不仅提供了固定动力的有益描述,而且在大多数参数范围内在数值上都是准确的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号